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StreptoVerticillium ferVens elaborates a unique nucleoside
antibiotic, FR-900848 (1), whose structure was published
without assignment of relative or absolute configurations.1 It
displays potent and highly specific inhibitory activity against
filamentous fungi including several pathogens responsible for
significant human morbidity/mortality but is almost inactive
against Gram-positive and Gram-negative bacteria. In light of
its low toxicity in mammals (murine LD50> 1g/kg),1 represents
a promising new lead to counter the alarming increase in the
incidence of systemic fungal infections as well as the concomi-
tant appearance of drug resistant strains.2 The most distinctive
structural feature of1 is its lipidic proboscis endowed with five
cyclopropane rings. Such unprecedented functionality poses a
daunting synthetic challenge and accordingly has engendered
considerable attention3 that has culminated in a recent total
synthesis.4 Herein, we describe a conceptually distinct approach
to 1 that (a) independently confirms the complete architecture
of FR-900848, (b) validates methodology for the stereocon-
trolled assembly of polycyclopropanes,5 and (c) illustrates a
variant of the Horeau principle6 leading to material of high
enantiomeric enrichment.
A retrosynthetic analysis, outlined in Scheme 1, bisected1

into fatty acid 2 and dihydrouridine3. The former was
provisionally assigned anall-trans stereochemistry based on
biogenetic considerations7 and the latter was presumed to have
the configuration typical of nucleosides. Moiety2 was simpli-
fied further by dismantling into monocyclopropane4, tetracy-
clopropane5, and the Horner-Emmons reagent6.8 Additional
insight into the configuration of1 came from its ozonolytic
degradation by Fujisawa scientists.9 The 13C NMR spectrum

of the serial tetracyclopropane fragment revealed seven reso-
nances only and was most consistent with amesoor C2-
symmetric product. Combined with extensive NMR compari-
sons with thesyn/anti-bicyclopropanes generated from 2,4-
hexadiene-1,6-diol (mucondiol) via nonselective cyclopropanation,
anall-trans, all-syngeometry for2was targeted. The absolute
configuration was selected arbitrarily and would be confirmed
en routeby comparison with a suitable degradation fragment
from natural material.
A reiterative dimerization strategy10,11 (Scheme 2) was

embraced for the preparation of the tetracyclopropane core of
2 and commenced with a moderately stereospecific (88-90%
ee) Charette-Juteau12 asymmetric cyclopropanation oftrans-
allylic alcohol7.13 Silylation of the derived cyclopropylmetha-
nol14 under standard conditions furnished stannane8which was
transmetalated withsec-BuLi. The newly generated lithium
anion was added to [ICuPBu3]415 and then subjected to an O2-
induced16 dimerization17 at low temperature to givesyn-
trans,trans-bicyclopropane9 (98% ee18), [R]D23-41.5° (c 0.23,
absolute EtOH). The enrichment in enantiomeric composition
is a manifestation of the statistical distribution of products and
represents a variant of the Horeau amplification principle.6

Classical resolution techniques are obviated and greater latitude
regarding optical purity of precursors is possible.
As a prelude to the next level of dimerization (and its

attendant Horeau amplification),9was converted to carboxylic
acid 10 via selective fluoride cleavage of one silyl ether and
RuCl3-catalyzed oxidation of the liberated alcohol. The one-
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pot preparation and photolytic decarboxylation of the corre-
sponding Barton thiohydroxamic ester19 in BrCCl3 at 0°C gave
rise to a 14:1 mixture of bromide11 and its cis-isomer,
respectively, that was readily separated by chromatography.
Repetition of the dimerization sequence, usingtert-BuLi for
anion generation, stereospecifically20 transformed11 into the
isotactic tetracyclopropane12 (>99.9% ee21 ) in good yield.
bis-Desilylation led to diol13, [R]D23 -151.8° (c 1.37, absolute
EtOH), whose spectral (1H/13C/CIMS) characteristics were
indistinguishable from those of a sample obtained by degradation
of natural material (O3/NaBH4). Following derivatization to the
bis-(S)-Mosher ester,13 and the diol from degraded natural
material had identical retention times upon chiral phase HPLC
analysis21 and could be clearly resolved from enantiomer18

(prepared as described in Scheme 2 using theR,R-Charette/
Juteau catalyst).

Partial deprotection of12 evolved14 which was prepared
for union with the remaining cyclopropyl unit by catalytic
tetrapropylammonium perruthenate (TPAP) oxidation. The
resultant aldehyde smoothly accepted the anion of sulfone21,
made from alcohol2012,13 via Mitsunobu condensation22 with
thiophenol and peracid oxidation (eq 1), to yield19 (R) H) as

a mixture of diastereomers. However, Julia elimination23 (R
) Ac, Ms) under a variety of conditions resulted in extensive
structural collapse and furnished almost none of the desired
trans-olefin. Alternatively, Peterson-type olefination exploiting
22 secured vinyl sulfone15 and a variable amount (10-20%)
of thecis-isomer that was removed chromatographically. The
sulfone was stripped away using lithium naphthalenide at-78
°C and aldehyde16was isolated after desilylation and oxidation
as described above. Horner-Emmons homologation of16
utilizing the ylide of6 furnished theall-transadduct as the sole
product which was saponified and condensed with 4-nitrophenol
using DCC to afford active ester17. Acylation of 5′-amino-
5′-deoxy-5,6-dihydrouridine (3)24 with 17 in DMF at room
temperature concluded the synthesis of1. Synthetic and natural
FR-900848 were identical in all respects (1H/13C NMR, HPLC,
FAB-MS).25
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